Everburning Star 1/2 DEMO Mac OS
  1. Everburning Star 1/2 Demo Mac Os Download
  2. Everburning Star 1/2 Demo Mac Os Catalina

The first Apple proposal to move the Macintosh to Intel hardware did not begin with Mac OS X. It began in 1985, shortly after Steve Jobs’ departure from Apple. The project was quickly nixed by Apple’s management, but it would be revived several years later in a joint effort by Novell and Apple to port the Mac OS to the x86 processor.

  • If you're planning on running the treasures of the past you'll find here on real old Macintosh hardware from the 90's, you sir/madame, deserve to win an Internet! For others, there's SheepShaver, a PowerPC emulator capable of running Mac OS 9.0.4 down to Mac OS 7.5.2 and there's Basilisk II, a 68k emulator, capable of running Mac OS (8.1 to 7.0).
  • This article presents a timeline of events in the history of 16-bit x86 DOS-family disk operating systems from 1980 to 2020. Non-x86 operating systems named 'DOS' are not part of the scope of this timeline. Also presented is a timeline of events in the history of the 8-bit 8080-based and 16-bit x86-based CP/M operating systems from 1974 to 2014, as well as the hardware and software.

Microsoft released Windows 3.1 in 1992, and it quickly became the best selling program in the industry. Both Novell and Apple were threatened by the new operating system. Novell feared that the new version of Windows (and especially the pending release of Windows NT) would interfere with its NetWare product, which held a near monopoly in PC networks.

Star Wars TSG is a minimalist Mac OS X application designed to help you replicate the Star Wars title sequence using your own information. The utility renders all the frames to BMP files, and then you can use QuickTime to create a movie file that can be integrated into your project easier.

Apple was equally threatened. Windows was not as easy to use, but Windows PCs cost less than Macs, and Windows could run standard DOS apps without add-on cards or emulation.

Novell began work modernizing Digital Research’s GEM, best known as the graphical environment used on the Atari ST, and turning it into a competitor to Windows. The legal department at Novell got the jitters over the project and had it canceled, fearing that an enhanced GEM would attract a lawsuit from Apple.

Darrell Miller, then Vice President of marketing at Novell, made a proposal to Apple CEO John Sculley about porting the Mac OS to Intel hardware. Sculley was thrilled by the offer – he wanted Apple to move away from the expensive hardware business and turn it into a software provider.

The project to bring the Mac OS to the Intel 486 began on Valentine’s Day in 1992 and was named Star Trek. The project was blessed by Intel’s CEO Andy Grove, who feared Microsoft’s power in the PC market.

Apple’s leadership gave a deadline of October 31 (Halloween) for creating a working prototype of Star Trek. The group set to work porting the Mac OS to Intel processors.

The task was a tedious one. Much of the Mac OS was written in 680×0 assembly code to make the computer faster and use less disk space. All of this code had to be totally rewritten for the 486. Other parts of the operating system were easier – most of the interface elements had been written in Pascal and only required a few modifications.

There were several other technical hurdles to overcome in porting the Mac OS to Intel processors. The software relied heavily on the ROMs in Macs, which stored much of the operating system and dictated how many GUI features behaved. It would be too expensive to create new ROMs for PC users, so the group implemented the ROMs in software, loading them during startup. (This feature would not be incorporated into Macs until the introduction of the iMac in 1998.)

The group managed to meet its deadline and had a functional demo ready by December 1, 1992. Apple executives were amazed to see the Finder run on an ordinary PC. The engineers did more than that – QuickDraw GX and QuickTime were also ported to x86.

With the first goal of the project completed, the engineers took a vacation in Mexico, and the management at Apple and Novell began to decide how to complete the project.

Unfortunately, John Sculley’s reign at Apple came to an end in the middle of the Star Trek project. The new CEO, Michael Spindler, had little interest in porting the Mac OS to x86 and devoted most of Apple’s resources to preparing System 7 for the PowerPC.

The Star Trek project was canceled, and the Mac OS would not run natively on Intel until after Apple acquired NeXT in 1996, which already had an x86-base operating system, NeXTstep.

In June 2005, Steve Jobs announced that Apple had been concurrently developing OS X on Intel and PowerPC processors for five years – and that within a year Macs would be based on Intel processors and future versions of Mac OS X would run on Apple’s forthcoming Intel-based hardware.

Tech Links

  • Windows 3.x, 3.1 released March 1992, Wikipedia
  • Windows NT, released July 1993, Wikipedia
  • Novell NetWare, Wikipedia
  • Atari ST, Wikipedia
  • GEM OS: The Other Windows, Roger McCarten, PC Mechanic
  • Intel 80486, Wikipedia
  • Star Trek Project, Wikipedia
  • NeXT, Wikipedia
  • NeXTstep, Wikipedia

Biographic Links

  • Nature Images, Darrell Miller, retired Executive Vice President, Novell
  • John Sculley, Wikipedia
  • Andy Grove, Wikipedia
  • Michael Spindler, Wikipedia

Bibliography

Some of the sources used in writing this article:

  • Apple: The Inside Story of Intrigue, Egomania, and Business Blunders, Jim Carlton
  • Infinite Loop, Michael Malone
  • The Second Coming of Steve Jobs, Alan Deutschman
  • Apple Confidential 2.0, Owen Linzmayer
  • Odyssey: Pepsi to Apple . . . a Journey of Adventure, Ideas & the Future, John Sculley

Keywords: #startrek

Short link: http://goo.gl/1tlLuy

searchword: startrek

Astrophotography is closer to science than art, and there is no such thing as “getting it right in camera.” This means you cannot simply point the camera at the sky and snap away.

In astrophotography you cannot avoid post processing your images, so stacking and editing your images serves three main purposes:

  1. Reduce noise and deal with light gradients and vignetting.
  2. Improve signal to noise ratio.
  3. Reveal the faint details in the image.

Image stacking is the technique used to improve the signal to noise ratio, and it is the only noise reduction method that will boost the image details rather than smear them out.

In this article, we will discuss some of the most popular software available for astrophotography image stacking.

Note: Don’t miss the detailed video at the end of this article, It was created to help show you how to quickly start using some of the stacking software mentioned in this article.
Click here to skip to our Image Stacking Demo Video.

What Does Stacking Photos Mean?

The concept behind image stacking is simple, but to appreciate how it works, there are a couple of things we have to consider:

  1. A stack can be visualized as a pile of images all stacked one on top of the other;
  2. Each digital image is formed by a set of pixels, all having a certain value: dark pixels will have a lower value than the bright ones;

In the simplest form of image stacking, the pixels values for all images in the stack are averaged to produce a single image.

What is the purpose of stacking photos?

The result is a single image with improved signal to noise ratio, i.e., with better details and lower (random) digital noise and better details.

The scheme below illustrates the concept.

If the considered digital noise affects the pixel values randomly across the stack, then the result of averaging the stack is that the random component of the noise to the pixel value is significantly reduced.

ISO noise and Luminance noise and Chrominancenoise are examples of digital noises that are random.

The image below shows a real-life example from stacking 30 images from my Sony RX10 bridge camera taken at ISO 6400. As you can see, the original images showed a greater deal of noise (grain) than the stacked one.

The More Images You Stack, The Better

The more images you stack, the cleaner the resulting images are, as shown in the comparison below.

While Image stacking creates a cleaner image, it often softens the image: digital sharpening techniques are then used to recover sharp looking details.

Finally, bear in mind that the progression of image quality is not linear.

If stacking 4 images improves the image quality of 50% respect what you got by stacking only 2 images, to improve a further 50% the image quality from stacking 50 images, you may need to stack 300 images or more.

Image Stacking And Movement

If nothing moves between shots, like in the previous real life example, implementing image stacking is very simple: just group the images and average them to smooth out the noise.

With a moving subject, grouping and averaging the images will not only smooth out the noise, but also the subject itself.

This is the same principle for which long exposures of passing traffic and crowd result in a street image without cars nor people.

This effect is amplified with the number of images used, and the moving subject could simply disappear from the stacked image.

To resolve the issue, you have to align the images based on their content before stacking.

Due to image alignment, you may have to trim the edges of the stacked image to get rid of artifacts, but your target will not be lost.

Note that while in theory you can stack images of a static scene taken with the camera on a tripod, in reality, those images will probably differ at the pixel scale due to micro-movements. It is always beneficial to align the images before stacking.

How To Shoot For Exposure Stacking Your Images

Image stacking can be done with any camera and even camera phones and with images in both RAW and JPEG format.

Nonetheless, some things can be done to improve the final result:

  1. Lock the focus, so that the camera will not hunt for it between images. This will also help to keep the focus consistent through the shooting sequence.
  2. Keep the same settings, in particular shutter speed, aperture, and focal length: you don’t want to change the camera field of view during the sequence, nor the brightness of the images or the depth of field.
  3. If you are shooting on a tripod, disable image stabilization. If you want to shoot handheld, do so only for short sequences at very high shutter speed.

Image Stacking In Astrophotography

Related:Astrophotography Software & Tools Resource List

As said previously, image stacking is a standard technique implemented in any astrophotography editing workflow for,

  1. A star field from a fixed tripod.
  2. A deep sky object from a tracking mount.
  3. The Moon handheld.
  4. A starry landscape from a fixed tripod or tracking mount.

Every astronomy image will benefit from image stacking.

List Of Photo Stacking Software For Astrophotography

Here is a list of software used in astrophotography for image stacking.

Adobe Photoshop

Complete Image Editor Commercial – Subscription Plan Photography Bundle $9.99 / Month Mac OS X, Windows

Pro

  • Versatile
  • Available for Mac and Windows
  • In bundle with Adobe Lightroom CC, Bridge, Camera Raw, and web space
  • Many action packs and plugins available for astrophotography

Cons

  • Subscription Plan only
  • Can’t be used to calibrate light frames
  • Stacking capabilities are somehow limited

If you are interested in photography, chances are you know Adobe Photoshop is the standard in the industry and does not need introductions.

With Adobe implementing a subscription plan for their applications, if you are using Lightroom CC for your everyday photography, your plan subscription will also include Photoshop CC and Bridge CC.

And for astrophotography, Photoshop is what you need. Lightroom cannot stack your images nor perform the histogram stretching, two crucial steps in the editing workflow for astrophotography.

In this article, we have already covered in detail how to stack astrophotography images with Photoshop.

Sequator

Deep Sky And Starry Landscape Stacker Freeware Windows

Pro

  • Free
  • Easy to use
  • Fast
  • Suitable for both Starry Landscapes and Deep Sky images
  • Can create Star Trails

Cons

  • Windows only
  • Limited set of options
  • Not suitable for Planetary astrophotography

Sequator is an easy-to-use and intuitive astrophotography software for stacking both starry landscape and deep-sky images. It can also be used to create star trails.

Everburning Star 1/2 Demo Mac Os Download

While not as advanced as other stackers, it nonetheless allows you to calibrate your light frames with dark and flat calibration frames. It also allows you to remove light pollution, reduce noise, and perform other simple tasks on the stacked image.

Starry Landscape Stacker

Starry Landscape Stacker Commercial, $39.99 Mac OS X

Everburning Star 1/2 Demo Mac Os Catalina

Pro

  • Fast
  • Easy to use

Cons

  • Mac Os X only
  • Does not read RAW files

If you are into starry landscapes and you are a Mac user, Starry Landscape Stacker is a must-have.

Easy to use, it allows you to stack and align the sky and the foreground independently by letting you easily mask the sky.

Unfortunately, the software lacks the support for RAW formats, thus forcing you to convert your RAW images in the more heavy TIFF format.

Aside from that, it works very fast and the final image is of good quality. You can also save the sky only, which is useful to further edit the shot in Photoshop or similar editors.

Starry Sky Stacker

Deep Sky Stacker Commercial, $24.99 Mac OS X

Pro

  • Fast
  • Easy to use

Cons

  • Mac Os X only
  • Does not read RAW files
  • Basic

Starry Sky Stacker is Starry Landscape Stacker brother and it has been created to stack deep sky astrophotography images.

As Starry Landscape Stacker, Starry Sky Stacker is very easy to use and intuitive, although very basic.

If you are a casual star shooter and a Mac user, this could be a good choice for you.

Deep Sky Stacker

Deep Sky Stacker Freeware Windows

Pro

  • Free
  • Easy to use
  • Fast
  • Full light frames calibration
  • Features Comet stack modes
  • Can Drizzle
  • Many advanced stack options and methods available

Cons

  • Windows only
  • Post-processing is quite limited
  • Not suitable for Starry Landscapes nor for Planetary astrophotography

Deep Sky Stacker, better known as DSS, is arguably one of the most widely used software to calibrate and stack astrophotography images.

With DSS, you can fully calibrate your images with Darks, Flats, Dark Flats, and Bias calibration frames for the best results possible. Light frames are analyzed and scored by quality so that you can decide which percentage of best images you can stack (Best 75% by default).

A very interesting feature is that with DSS, you can easily combine images taken during different imaging sessions, to produce images of higher quality.

Autostakkert!

Everburning Star 1/2 DEMO Mac OS

Planetary Stacker Freeware Windows

Pro

  • Free
  • Easy to use
  • Suitable for Planetary, Lunar and Solar images
  • Stack full planetary disk and lunar surface close-ups

Cons

  • Interface a bit confused
  • It does not offer wavelet sharpening
  • Windows only

Autostakkert!, also known as AS!, is a very popular free software among the solar system astrophotographers. With AS! it is easy to stack both images showing the full Planetary (or Lunar or Solar) disc and images showing lunar surface close-ups.

The interface is a bit confusing, particularly in the beginning, but it is easy to navigate through the different steps for the stacking.

Unfortunately, AS! does not offer wavelet sharpening, which is a widely used technique in planetary and lunar astrophotography. For this, you can load your stacked image in Registax, another freeware software for Windows only that, sadly, is now “abandoned-ware.”

Lynkeos

Planetary Stacker Freeware Mac OS X

Pro

  • Free
  • Has deconvolution and wavelet sharpening
  • It is probably the only freeware planetary stacker for Mac OS X

Cons

  • Not very intuitive
  • Somewhat slower than Autostakkert!

Lynkeos is perhaps the only freeware planetary stacker software for Mac OS X, sparing you from turning to Windows for using Autostakkert!.

The interface is quite intuitive to navigate, but not when it comes to performing the different tasks.

On the other hand, it offers a deconvolution method and wavelet sharpening, a must-have for a planetary stacker. Definitely worth having a look at it if you are a Mac user.

SiriL

1/2

Deep Sky Astrophotography Editor Freeware Mac OS X, Windows, Linux

Pro

  • Free
  • Cross-Platform
  • Active development

Cons

  • A bit convoluted and not as intuitive as other stackers

SiriL is a freeware, cross-platform, astrophotography package that will let you calibrate, stack, and develop deep sky astrophotography images.

While not as easy and intuitive as Sequator or DSS, it offers a lot of options and produces good results. There is an active community, and it is under constant development.

Astro Pixel Processor

Deep Sky Astrophotography Editor Commercial $60/Yr Renter License Or $150 Owner License Mac OS X, Windows, Linux

Pro

  • Full-grown astrophotography package
  • Fairly easy to use
  • Mosaics are created with ease and are of great quality
  • Active and constant development
  • Cross-Platform
  • 30-days Trial period
  • Affordable yearly subscription

Cons

  • Only for deep sky astrophotography
  • No Comet stacking mode

With Astro Pixel Processor (APP), you step in the realm of full-grown astrophotography packages, with many advanced options and methods to calibrate, stack, and post-process your deep-sky images.

Compared to PixInsight (PI), the software benchmark for the category, APP is cheaper and way easier to use, which makes it one of the best PI alternatives.

If you decide to buy it, you can choose between the renter’s license for $60/yr, to always get the latest version of APP, or the owner’s license for $150, but you will have to purchase the license again for major update releases.

PixInsight

Astrophotography Editor Commercial – €230+VAT Mac OS X, Windows, Linux

Pro

  • It has all you need for astrophotography
  • 45 days trial period
  • A lot of tutorials and information available

Cons

  • Expensive and without subscription plan
  • Extremely steep learning curve
  • Long and convoluted process
  • Needs a powerful computer

When it comes to astrophotography, PixInsight is the software of reference against which all others are measured. It offers everything you may possibly need to produce pro graded images, and it is objectively the best software in the field.

But user experience can be frustrating, as the learning curve is very steep, the editing is long and convoluted, and your computer must be quite recent and powerful to make it run smoothly.

The €230 + VAT price tag is also quite steep: sure it is worth every penny, but this makes PI be even more the software of choice for professional and keen amateur astrophotographers.

A Comprehensive Demo About Image Stacking

In this video, I show you how easy it is to wet our feet with image stacking.

This is particularly true if you use Starry Landscape Stacker, Sequator, Deep Sky Stacker and Autostakkert!, as I showed in the video below.

Conclusion

Image stacking is one of the crucial steps in the astrophotography editing workflow.

You’ll need the appropriate stacker for each type of astrophotography: starry landscapes, star trails, or deep-sky and planetary images.

In this article, we have covered the most popular astrophotography stackers available on the market, both freeware and commercial.

And while Windows users have the more extensive choice, some notable stackers are available for Mac and even Linux users.